3 research outputs found

    Automatic speech recognition: from study to practice

    Get PDF
    Today, automatic speech recognition (ASR) is widely used for different purposes such as robotics, multimedia, medical and industrial application. Although many researches have been performed in this field in the past decades, there is still a lot of room to work. In order to start working in this area, complete knowledge of ASR systems as well as their weak points and problems is inevitable. Besides that, practical experience improves the theoretical knowledge understanding in a reliable way. Regarding to these facts, in this master thesis, we have first reviewed the principal structure of the standard HMM-based ASR systems from technical point of view. This includes, feature extraction, acoustic modeling, language modeling and decoding. Then, the most significant challenging points in ASR systems is discussed. These challenging points address different internal components characteristics or external agents which affect the ASR systems performance. Furthermore, we have implemented a Spanish language recognizer using HTK toolkit. Finally, two open research lines according to the studies of different sources in the field of ASR has been suggested for future work

    Robust surface abnormality detection for a robotic inspection system

    Get PDF
    The detection of surface abnormalities on large complex parts represents a significant automation challenge. This is particularly true when surfaces are large (multiple square metres) but abnormalities are small (less than one mm square), and the surfaces of interest are not simple flat planes. One possible solution is to use a robot-mounted laser line scanner, which can acquire fast surface measurements from large complex geometries. The problem with this approach is that the collected data may vary in quality, and this makes it difficult to achieve accurate and reliable inspection. In this paper a strategy for abnormality detection on highly curved Aluminum surfaces, using surface data obtained by a robot-mounted laser scanner, is presented. Using the laser scanner, data is collected from surfaces containing abnormalities, in the form of surface dents or bumps, of approximately one millimeter in diameter. To examine the effect of scan conditions on abnormality detection, two different curved test surfaces are used, and in addition the lateral spacing of laser scans was also varied. These variables were considered because they influence the distribution of points, in the point cloud (PC), that represent an abnormality. The proposed analysis consists of three main steps. First, a pre-processing step consisting of a fine smoothing procedure followed by a global noise analysis is carried out. Second, an abnormality classifier is trained based on a set of predefined surface abnormalities. Third, the trained classifier is used on suspicious areas of the surface in a general unsupervised thresholding step. This step saves computational time as it avoids analyzing every surface data point. Experimental results show that, the proposed technique can successfully find all present abnormalities for both training and test sets with minor false positives and no false negatives

    Calibration test data for a robot mounted laser scanner

    No full text
    This data set contains line scan data acquired from a micro epsilon laser scanner, under default settings, that is mounted to an industrial robot arm. The robot is a Fanuc LR Mate 200 iC industrial robot arm, driven by a R-30/iA Mate controller. The scanner is a Micro Epsilon 3D profile sensor (sensor model: Epsilon scan control 2900-50). To acquire the data the laser scanner is positioned relative to a flat target plate, and laser scans are collected by using the robot to position the laser scanner at a range of poses relative to the plate. The data set also includes a definition of the pose of the robot tool center point. The data can be used to investigate strategies for robot hand-eye calibration of laser scanners using only data collected from flat target surfaces.</div
    corecore